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In this paper, the cellular automata model is applied to analyse cleavage and ductile fracture
in front of a crack in three-point-bend specimens made of Hardox-400 steel. The research
programme was composed of experiments followed by fractographic and numerical analyses.
On the basis of microscopic observations, the sizes of cells used in the automata were de-
termined. The algorithm enabled mapping of the two-dimensional crack surface as well as
a simulation of temperature-dependent failure mechanisms by defining transition rules ba-
sed on the modified Ritchie-Knott-Rice cleavage fracture criterion. The critical stress values
were estimated and verified by the cellular automata model.
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1. Introduction

Johann von Neumann is considered to be the creator of the cellular automata (CA) idea, but this
theory became famous in 1970, when John Horton Conway created one of the most well-known
automatons, “Game of Life”. Another important figure in the history of CA theory development
was Stephen Wolfram, who created the classification standards of automata (Wolfram, 1983).
In a comprehensive monograph (Wolfram, 2002), Wolfram presented the idea of CA and proved
the flexibility of this method for different applications. Thus, the crack grawth analysis can
be considered as a one of possible applications. Koziol et al. (2010) analysed the phenomenon
of brittle fracture including inclusions existing in the material. The model was based on an
algorithm describing an increase in dislocation density as a result of deformation. Yamamoto et
al. (2016) used the cellular automata method and analysed the brittle fracture process to explain
the relationship between steel sheet microstructures and macroscopic brittle cracking. For this
purpose, the authors created a multi-scale model consisting of a micro-scale fracture model at
the level of one grain and a macroscopic model for simulation of brittle fracture at the level of
the analysed object. Halberg (2011) reviewed the main modelling and simulation methods of
recrystallization and determined that microstructure control in terms of grain size was crucial in
predicting the material properties of metals and alloys. For this purpose, he also used the theory
of cellular automata. Halberg presented the use of cellular automata as an easy-to-implement
method with less computational requirements than other methods. Another advantage was that
CA enabled both three-dimensional and time-dependent analyses (each iteration can be treated
as a time step). As a disadvantage, he noted the problem with reflecting the grain shape.
Each CA consists of a set of states, a finite space of cells as well as transition rules. The

neighbourhood type can be changed between cells and between iterations. The transition rules
determine the current state of the cell based on the previous state of the cell and the states of
its neighbours. The transition rules can be deterministic and/or probabilistic. The vast majority
of CA are composed of a regular grid filled with cells of the same size and shape; however, there
are applications in which an irregular or even random grid (Janssens, 2003) has been used.



578 U. Janus-Gałkiewicz, A. Neimitz

Before analysis begins, it is necessary to determine the cell space, number of states and
transition rules. The first stage of the study, which included experimental studies, microscopic
observations and numerical calculations, allowed for the formulation of the assumptions for the
analysis of brittle fractures using CA. These assumptions are based on the modified Ritchie-
-Knott-Rice criterion for cleavage fracture (Neimitz et al., 2007). The main idea of this criterion
is that the opening stress (assuming finite strain) should exceed the critical value on a sufficiently
large area (or length for two-dimensional cases) in front of a crack to initiate cleavage fracture.
In previous analyses (Neimitz et al., 2014), the critical length, where stresses reached the requ-
ired level, was determined as well as the critical stress values for each analysed temperature.
However, the critical stress values were estimated for plane strain conditions; therefore, for a
three-dimensional analysis they should be adjusted because in this case, the stress must exceed
the critical value within the surface (Fig. 1b) rather than the section (Fig. 1a, section a-b).
Critical stress values should be estimated using the constant critical area for each temperature.

Fig. 1. Critical area for: (a) plane strain model, (b) three-dimensional case (1/2 specimen thickness)

To define the number of states and transition rules, experimental and microscopic analyses
on Hardox-400 steel were performed. During the experimental studies, it was shown that the
inclusion size did not significantly affect the level of stress inside and outside inclusions, and their
shape had a significant impact on the nature of cracking (Neimitz and Janus, 2016a,b). Through
microscopic observations, it was confirmed that the mechanism of cleavage was initiated by
large inclusions. The relationship between the level of deformation and the amount of destroyed
inclusions was also demonstrated. Numerical analysis of elementary cells with edge length of
20µm showed that there was no interaction of large inclusions at a distance greater than 20µm
(Neimitz and Janus, 2016a,b).

2. Basic assumptions of cellular automata

The main idea of CA application is to recapture fracture surfaces. In our analysis, only the first
cleavage jump was modelled.

The two-dimensional model with Moore’s neighbourhood radius r = 1 was used to simulate
fracture mechanisms. It was assumed that the CA grid was filled with square cells. Thus, the
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model in each computational step analysed cells with eight neighbours. These assumptions were
based on observations on the scanning microscope of Hardox-400 steel where each grain was ad-
jacent to approximately 7-8 other grains (Fig. 2). It was also assumed that one cell corresponded
to one grain, and based on microscopic observations, an average grain size was 10µm.

Fig. 2. Microstructure of Hardox-400 steel and Moore’s neighbourhood

It is widely believed that the fracture process starts with large inclusions (Pineau and Par-
douen, 2007; Besson, 2004; Horstemeyer et al., 2003; Gullerud et al., 2000; Gurland, 1972; Dighe
et al., 2002). In previous publications, we assumed that the large inclusion was equal to 2µm,
when the grain size was equal to 20µm (Neimitz and Janus, 2016a,b). The inclusions are the
nuclei of the micro-cracks or void nucleation (Pineau, 2006). Then, the voids grow and coale-
scence. Small inclusions take part in the fracture process only in the final stage of the voids
or micro-crack coalescence. Since the presence of inclusions is a feature of the material, it is
necessary to include inclusions at the beginning of the simulation. In the proposed CA model,
the presence of inclusions in a cell defines its state. There are three states of the cell including
“alive”, “weakened” and “dead”.

The grains that are free of inclusions and are not fractured were considered as the “alive”
cells. The stress level in the “alive” cell can be either lower than the critical level or can exceed
critical stress. The cell in a “weak” state corresponds to the grain containing large unbroken
inclusion and the stress level is lower than the critical value. The number of inclusions follows
the assumed initial inclusions ratio. The grain containing void nucleated due to fracture or
decohesion of large inclusion is also considered in a “weak” state if it is located between crack
front and the stress maximum.

The “dead” state of the cell indicates broken grains. For the first iteration (i = 1), the cell
is “dead” if it contains large inclusions, and the stress level is higher than the critical stress
according to the cleavage criterion. In a situation in which the grain does not contain inclusion
but has a dead neighbour, and the value of stress exceeds the critical level (for i  1), the cell
corresponding to this grain also becomes dead. The algorithm used in the program proceeds in
such a way that the cell in the “alive” or “weak” state can only change into the “dead” state.
The “dead” state (fractured grain) is an irreversible state. The simulation stops when, after
checking all cells in the given iteration, none of the cells would change states.

The model assumes that the weakened cells occur in a random manner. CA also takes into
account the orientation of the cleavage planes in the analysed grain as well as in the neighbo-
uring grains (at a distance not greater than the size of one grain). Based on the orientation
of the cleavage planes, the algorithm determines the actual stress value in the normal direc-
tion to the cleavage plane and, based on the cleavage criterion, selects the preferred path of
crack propagation. In Fig. 3, the algorithm of the cellular automata by a block diagram is pre-
sented.
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Fig. 3. The block diagram of the cellular automata
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3. Rules of transition

The numerically obtained stress distribution in front of the crack is implemented by a function
characterized by the following parameters: maximum stress level σmax, distance of the maximum
stress from the crack tip rdist, stress level at the crack tip σtip, critical stress level σcr, auxiliary
stress level σmid, crossing point of two lines tangent to the stress distribution rmid, stress level
on the boundary of the analysed area σbound and the border line of CA rbound (Fig. 4). The green
dashed lines (Fig. 3) define σmid and rmid. These curves are tangent to the stress distribution
curve.

Fig. 4. Opening stress distribution in front of a crack introduced to CA by defined points

Fig. 5. Stress changes in the thickness direction for different values of n

The stress distribution in the thickness direction is based on the second degree polynomial
rised to the appropriate power n (σ = (ax2 + bx+ c)n, where x is the normalized distance from
the symmetry axis, x = 0 for the specimen symmetry axis, and x = 1 for the specimen surface;
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Fig. 5) to give it a suitable shape. The main feature of this polynomial is that on the edges of
the specimen the value is always 0, whereas on the specimen symmetry axis, the value is 1.
All the above parameters were determined after numerical calculations for a three-point

bending specimen and implemented into the CA model. The loading of the three-point bending
specimen was simulated using Abaqus/CAE 6.12-2 software. Due to existing symmetries, only a
1/4 of the specimen was modelled (Fig. 6). It was assumed that the notch radius was 0.01mm.

Fig. 6. Numerical model of the three-point bending specimen

The results of numerical analysis also allowed to determine the coefficient values (µ, β,
ζ, γ), which are used while defining the transition rules. The meanings of these coefficients are
explained later.

Fig. 7. Scheme for evaluation of stress tensor components along cleavage planes

Cleavage develops along certain crystallographic surfaces called cleavage planes. The cleavage
planes are oriented randomly, which is taken into account in the simulation program. Angles
defining the orientation of cleavage planes αn (Fig. 7, α1, α2, . . . , αn) change in the range ±45◦
due to the crystallographic structure of steel under test, which is ferritic steel, and the cleavage
planes are defined in the direction {1, 0, 0}. The model assumes the stochastic orientation of the
cleavage planes in the adjacent grains and utilizes their orientations to determine the real stress
values in the normal and tangential directions (3.1) (Fig. 7)

σ∗22 = (σ22 cos
2 α1 + σ11 sinα1)βµζγ

σ∗∗22 = (σ22 sin
2 α1 + σ11 cos

2 α1)βµζγ
(3.1)

where µ – parameter describing the orientation of cleavage planes in Moore’s neighbourhood
Eq. (3.4), β – stress concentration factor Eq. (3.5), ζ – factor taking into account strain energy
Eq. (3.7), γ ≈ 1.002 – stress concentration factor for “weaken” cells in the neighbourhood of
inclusion.
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The introduced algorithm takes into account the location of the cleavage planes in the ne-
ighbouring grains and is based on the cleavage criterion, which selects the privileged crack
propagation path. The Hutchinson-Rice-Rosengren (HRR) formula was used (Hutchinson, 1968;
Rice and Rosengren, 1968) to calculate the stress distribution in front of the crack

σ22 = σ0
( J

α0σ0Inr

) 1

1+n
σ̃22(θ

∗∗, n) (3.2)

where: J – J-integral, σ̃22 – dimensionless variations of the stress tensor component, θ
∗/∗∗ –

angle resulting from the random position of the cleavage plane (Fig. 7), In – numerical quantity
resulting from the path-independence of the J-integral (Gałkiewicz and Graba, 2006), σ0 – yield
stress, ε0 = σ0/E, E is Young’s modulus, n – hardening exponent in the Ramberg-Osgood law,
α – coefficient in the Ramberg-Osgood law.
Functions σ̃22 and In depend on the hardening exponent n in the material following the

Ramberg-Osgood law. Values of these functions were calculated with a program (Gałkiewicz
and Graba, 2006) that easily provides the user with HRR parameters. It was assumed that
n = 10, and Tm = 0.1, Eq. (3.3). Such combination of parameters defines the intermediate state
between the plane strain and the plane stress conditions

Tm =
Tzigi
B

(3.3)

where: Tzi – triaxiality factor in the i-th layer (Tz = σ33/(σ11 + σ22) where σ33 is the normal
stress in the thickness direction), gi – thickness of the i-th layer in the numerical model, B –
thickness of the specimen.
Formula (3.2) determines the stress field surrounding the crack tip and values of stress change

with the angle relative to crack orientation. Adjacent grains are randomly oriented to each other,
as are the cleavage planes. A correction factor µ must then be entered as follows (Fig. 8)

µ =
σ̃22(θ

∗/∗∗, n)

σ̃22(θ∗/∗∗ = 0◦, n)
(3.4)

where θ∗/∗∗ – (see Fig. 7).

Fig. 8. The plot of the µ function with respect to θ = 0◦-45◦

Any discontinuity in the material, such as micro-cracks, causes concentration of stress. The
parameter describing the stress concentration in the proposed algorithm is the factor β, Eq. (3.5).
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This parameter takes into account the stress gradient in front of the crack. For Hardox-400
steel, the amplitude and location of the maximum stresses in front of the crack changes with
temperature. The lower the temperature, the higher the stress gradient (Fig. 9).

Fig. 9. Distribution of the opening stress σ22 in front of a crack in the centre of the specimen for
different temperatures

The following form of the stress concentration factor is proposed

β =
1

σ0

(
σ0 +

σ22max − σ0
λ

)
(3.5)

where λ = rdist/gs – normalized distance of the maximum stresses from the crack tip characte-
ristic for a given material, independent of temperature, gs – grain size.

Table 1 shows the values of the coefficient β determined for a wide range of temperatures. Its
value significantly influences the state transition of cells in CA and, consequently, the mechanism
of damage.

Table 1. Values of β and ζ for different temperatures

T [◦C] β ζ

+20 1.03 1

0 1.07 2.34

−20 1.08 2.57

−50 1.25 3.85

−80 1.29 9.57

The parameter β only applies to cells next to the “dead” one. The “dead” cells increase
the stresses in the Moore’s neighbourhood of radius r = 1. In each cell, the stress level can be
increased by this factor, only at the iteration when in the neighbourhood there appears a cell in
the “dead” state, as presented in Fig. 10.

Fracture in elastic-plastic materials is accompanied by energy dissipation, which can ge-
nerally be divided into energy dissipated by creation of the new surface and associated with
phenomena such as creation and development of micro-cracks and/or voids and growth of pla-
stic deformation. There are different sources of energy for both dissipative processes (Neimitz,
2008). The new surface, created due the cleavage mechanism, uses only the elastic energy stored
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Fig. 10. Operation of the parameter β (a scheme of neighbouring cells when the stresses are increased
by the stress concentration factor)

in the loaded specimen containing the crack. Only a part of this energy is used to create a new
surface. The remaining part is recovered after unloading. The lower the temperature at which
the fracture occurs, the greater amount of the elastic energy changes into surface energy. The
energy dissipations due to plastic deformation requires additional work by external forces. When
cleavage occurs by a large jumps, as observed in the case of Hardox-400 steel, the size of the
new surface increases with a temperature decrease. The greater the force drop, the larger the
jump usually observed. During experimental (three-point bending test) investigations at higher
temperatures, mainly ductile or cleavage-ductile failure mechanisms were observed (Fig. 11a),
whereas in low temperatures, the cleavage mechanism was dominant (Fig. 11b).

Fig. 11. The scheme to estimate the dissipation energy during crack jump: (a) cleavage-ductile fracture
(temp. 0◦C), (b) fracture mechanism dominated by cleavage (temp. −80◦C)

In Figs. 11a and 11b, the areas of dissipated and recovered energy are marked. The higher the
temperature, the smaller the load drop and the smaller amount of energy consumed for the new
surface. In extreme cases, the ratio of cleavage to total energy goes to zero when approaching
ductile fracture (Neimitz, 2008) and to one for very low temperatures, e.g., around −100◦C.
The cleavage analysis discussed in this paper examines the first “jump” in the force-deflection

plot because it is based on the stress field obtained by the finite element method calculations
for experimental measurements at the moment of the first jump initiation. After the onset of
crack jump, the mechanical field completely changes, and the current level of knowledge does not
allow for its determination. Cleavage is a very dynamic process, and it develops at high speed.
When the jump is small, the entire process can be approximated with the cellular automata
method presented in this work, based on the stress distribution calculated just before the jump.
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When the crack jump is greater, the model should be enriched with an element responsible for the
cleavage dynamics. The research on crack dynamics (Freund, 1972, 1990; Achenbach, 1974, 1976)
dealt with very idealized cases including a perfectly elastic body, an infinitely large specimen.
Plasticity can be introduced by a Dugdale model for plane stress conditions and perfectly plastic
materials. This research does not allow for reasonably precise and logical correcting elements.
From analysis of the fracture dynamics utilizing the Dugdale model, it is known that during
rapid crack growth, the stress intensity factor decreases with increasing speed, and the plastic
zone becomes shorter, i.e., the plasticity in the propagation process becomes limited

KIIIdyn = KIIIstat
√
1− βT rp =

K2IIIstat(a)

k2
π

8
(1− βT ) (3.6)

where: βT = ν/cT is the relative crack speed, ν is the crack speed, cT is the shear wave speed,
k is the yield stress for pure shear, and KIIIstat is the static stress intensity factor for mode III.
Equations (3.6) were given after (Achenbach and Neimitz, 1981), where relations for mode I
loading were also given. These formulas can only be used as qualitative information about the
rapid growth (“jump”) of cracks.

In this case, the experimental research shows that during the dynamic crack growth, the
stress intensity factor and, therefore, the energy release rate, depends on temperature. From ob-
servation and formula (3.6)2 we know that the plasticity in the cracking process also depends on
temperature. Based on the measurements carried out on the test specimens in the temperature
range from +20◦C to −80◦C, the relationship between the ratio Efract/Edisstot and the tempera-
ture was established, where Efract is the energy dissipated by the new surface (Figs. 11a and 11b),
and Edisstot is the total dissipated energy during the jump (Figs. 11a and 11b). Observations
of energy dissipated during cleavage jumps and conclusions resulting from the description of
fracture dynamics are the origin for the introduction of the coefficient determining the impact
of dynamic processes on cleavage development. This coefficient is marked with the symbol ζ
(Fig. 12a) (Table 1)

ζ = χ
Efract(T )

Edisstot (T )
exp
(K2JC(T = 20◦C)−K2JC(T )

K2JC(T = 20
◦C)

)
(3.7)

where KJC – fracture toughness, χ – correction factor.

Values of the critical stress intensity factors at different temperatures can be measured
experimentally as well as estimated from the master curve. KJC changes with temperature in
the range from 75MPa

√
m (for −100◦C) to 220MPa√m (for 20◦C) and has been read from the

linearized master curve (Neimitz and Dziopa, 2017). Based on the range of values, a simplified
fracture toughness function was proposed (Fig. 12b).

Energies Efract and Edisstot are evaluated from force-displacement plots (Figs. 11a and 11b).
The coefficient χ was adjusted to the experimentally obtained fracture surface sizes after the
first jump (which sometimes is the only jump). The experimental points are approximated by
the trend line (Fig. 12a)

A+B exp
(
−T
C

)
(3.8)

where A = 2.2, B = 0.14, C = 20.08.

The parameter ζ determines the influence of dynamic processes on cleavage development. It
is an important factor for determining the destruction mechanism. Table 1 presents its values
depending on temperature. The values indicate strong influence of the parameter ζ on the stress
level, especially at the lowest temperatures.
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Fig. 12. (a) Dependence of ζ coefficient on temperature. (b) Simplified master curve function KJC

4. Results and conclusions

Numerical calculations provided the necessary data that were implemented in the CA to perform
simulation. The cell evolution is based on the defined neighbourhood, number of states, boundary
conditions and transition rules.
To estimate the critical stress value σcr, the critical area size for each temperature was

assumed to be constant. The average value of this area was 3.2mm2. Based on this assump-
tion, values of critical stresses for the analysed specimens were determined (crosses in Fig. 13).
Next, the mean critical stresses for each temperature were calculated and taken into account
in the simulations (circles in Fig. 13) (Table 2). The largest scatter was observed at the lowest
temperatures.

Fig. 13. Critical stresses σcr [MPa]

The best agreement of the experimental results and numerical calculations is obtained for
+20◦C and 0◦C (Fig. 13), which is reasonable. For these temperatures, the small cleavage jump is
within the defined stress area. Experimental tests at +20◦C did not reveal any jumps according
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Table 2. The critical stress

T [◦C] σcr [MPa]

+20 2985

0 2835

−20 2550

−50 2165

−80 1970

to the cleavage. The CA simulation for this temperature appears correct. The surface is composed
of numerous islands of ductile fractures (white cells), with rare cells meeting the modified RKR
criterion (Fig. 14). The large scatter of the results at −50◦C is likely because for Hardox-400
steel, this temperature is the brittle-ductile transition temperature. Large scatter was observed
during experimental studies. For specimens at −50◦C, a big single jump often occurred and,
occasionally, a few small brittle-ductile jumps appeared. At −80◦C, only single large cleavage
jumps were observed.

Numerical calculations show that in samples in which many short jumps were observed, the
stress gradient in the distance greater than rdist was larger than in samples in which there was
one large jump. The large gradient slowed the crack increase in CA simulations. Therefore, the
algorithm is better for simulating small jumps. During the simulation of large jumps, the CA
usually overestimated the fractured area in comparison to the specimens in which small jumps
occurred.

Figures 14a-14d show selected results of simulations for samples with a thickness of 12mm,
tested at different temperatures. It has been assumed that 5% of grains were weakened by the
presence of large inclusions. The red line indicates the cleavage jump observed on the surface of
the fracture. The simulation results show that the CA method is an effective tool for qualitative
and quantitative cleavage analyses. The proposed algorithm effectively predicts the fracture
mechanism.

Fig. 14. Specimen of thickness 12mm: (a) +20◦C, (b) 0◦C, (c) −50◦C, (d) −80◦C

The results of the CA simulation revealed the following dependencies that were also observed
during experimental studies:

• the length of the cleavage crack jump is higher at lower temperatures; however, sometimes
several small jumps were observed for specimens tested at −50◦C,
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• the model surface is completely covered with cells that meet the cleavage conditions,
whereas with increasing temperature, the number of “ductile islands” increases (white
cells),

• the state of the cell is determined by the level of stress, the presence of the “dead” neighbour
(as a micro-crack), the orientation of the cleavage planes, the mutual orientation of the
cleavage plane in neighbouring cells, and the presence of large inclusions,

• of all the abovementioned factors affecting the state of the cell and the stress level, the
smallest influence has the presence of large inclusions (γ = 1.002). Large inclusions are
the sites of void/micro-crack nucleation due to nonuniform plastic deformation, and they
were included in the CA model,

• temperature has a significant effect on the damage mechanism,
• the model according to the CA theory can be used for verification of the critical stresses
values (Table 2),

• the length of the cleavage jump depends mainly on the amount of elastic energy stored in
the body.
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